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Abstract

This paper gives clear definitions and provides proof for calculating the number of

chords and different pitch-class sets that are based on the notion of chords — chord

type permutations, chord type inversions and chord types, which have the equivalent

mathematical terms of linear combinations, circular permutations, circular

combinations and binary necklaces with fixed content respectively. The proof relates

to the applications of these combinatorial objects in music and does not employ

notions from group theory. Further musically useful properties such as the degree of

symmetry and the relationship between symmetry and coprimality were also revealed

through this method. The paper also provides proof of the formulas for calculating the

number of chord type progressions and demonstrates an efficient way of navigating

through the vast number of possibilities.
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1. Chords

Let us begin by formulating the definition of a chord, according to most music dictionaries:

A chord is a simultaneous sounding of at least three notes.

Some dictionaries mention the sounding of at least two notes, which is also named an

interval. We will include intervals as chords in the course of this paper.

1.1 Number of chords

According to the definition, the simultaneous combination of the notes C2, C3 and C4

qualifies as a chord, even though it only consists of octaves, which makes it very consonant.

At the same time, the combination C3, C#3 and D3 is also a chord, although it is very

dissonant. Taking this into account, the number of chords, as they are defined, is very large

and depends on the range of the given instrument (there are more chords on a piano with 88

keys than a synth keyboard with 61 keys). But we would only like to distinguish between

major and minor for example, without octaves, transposition or inversion. For this we need

more precise terms that take into account these conditions. Luckily there are already

mathematical terms that provide a complete description of these objects and we can draw the

connection between them and the musical objects.

Let us examine the simple case of calculating the number of 3-note chords on an 88

keys piano. For this we need to understand the combinatorial notions of permutation and

combination.



Definition 1.1 A permutation is an arrangement of objects in linear order.

Definition 1.2 A combination is an arrangement of objects, such that the ordering of

the objects is not taken into account. It is a partition of the permutation set, a set of

equivalence classes of permutations.

Lemma 1.1 Let P(n) be the number of permutations for n objects. Then P(n)=n!.

Proof . To arrange one object, there are n possibilities. For each of these possibilities

there remain n-1 possibilities to order the second object. By induction, to order the nth object

there are n-n+1 possibilities. Therefore P(n)=n(n-1)(n-2)…(n-n+1)=n!

Q.E.D.

Lemma 1.2 Let C(n) be the number of combinations for n objects. Then C(n)=1.

Proof. Following Definition 1.2 we need to eliminate the linear ordering of the

objects from all possible arrangements of n by making them equivalent. But there are n!

possible orderings of the objects. Therefore, we need to divide P(n) by n!, which is n!/n!=1.

Q.E.D.

Corollary 1.1 Let P(n) be the set of permutations of n objects and C(n) the set of

combinations. The following statement follows directly from Definition 1.2: for any element

a∈C(n), C(n)={x∈ P(n) : x ∼ a}.

An example for P(3) is {123, 132, 213, 231, 312, 321} and its cardinality P(3)=6.

Then C(3)={123∼132∼213∼231∼312∼321} and its cardinality C(3)=1. We can now create a



representative for this set of equivalent elements by taking, for example, the first character

from the given alphabet (in our example the alphabet consists of the numbers 1, 2 and 3).

Then C(3)={111}.

Lemma 1.3 Suppose there are k objects of one type and n-k objects of the second

type. Let the number of combinations for k be the binomial coefficient , denoted by C(n, k).

Then, C(n, k)=n!/(k!(n-k)!).

Proof. Following the previous proof, there are n! ways to order n=k+n-k objects

linearly. From those we eliminate all the orderings of the objects, thus obtaining the number

of combinations of k objects, as described in Definition 1.2 and Lemma 1.2. That is k!

orderings of k objects, (n-k)! orderings of n-k objects. Let P(4, 2) be the set of all

permutations of k=2 objects consisting of the numbers 1 and 2, and n-k=2 objects consisting

of the characters a and b. Then P(4, 2)={12ab, 12ba, 21ab, 21ba, 2a1b, 2b1a, 2ab1, 2ba1,

1a2b, 1b2a, 1ab2, 1ba2, a12b, a21b, a1b2, a2b1, ab12, ab21, b12a, b21a, b1a2, b2a1, ba12,

ba21}. Following Corollary 1.1, we can create C(4, 2) by making the orderings equivalent

and then represent those equivalent elements by replacing the characters of each alphabet

with the first characters from the given alphabets. Therefore,

C(4,2)={12ab∼12ba∼21ab∼21ba, 2a1b∼2b1a∼1a2b∼1b2a, 2ab1∼2ba1∼1ab2∼1ba2,

a12b∼a21b∼b12a∼b21a, a1b2∼a2b1∼b1a2∼b2a1, ab12∼ab21∼ba12∼ba21}. But

{12ab∼12ba∼21ab∼21ba}≡{11aa}, {2a1b∼2b1a∼1a2b∼1b2a}≡{1a1a},

{2ab1∼2ba1∼1ab2∼1ba2}≡{1aa1}, {a12b∼a21b∼b12a∼b21a}≡{a11a},

{a1b2∼a2b1∼b1a2∼b2a1}≡{a1a1} and {ab12∼ab21∼ba12∼ba21}≡{aa11}. Therefore

C(4, 2)={11aa, 1a1a, 1aa1, a11a, a1a1, aa11}. As we can see, for each permutation of k there

are (n-k)! permutations of n-k and for each permutation of n-k there are k! permutations of k.



There are therefore k!(n-k)! permutations that are equivalent in a given class. We now divide

the total n! permutations by k!(n-k)! number of elements in an equivalence class to obtain the

number of equivalence classes that can each be represented by one element consisting of the

first characters.

Q.E.D.

In the musical context, n is the total number of notes that are available, k is the number of

notes that we choose and n-k is the number of notes that are not chosen or played. In our

piano example, n=88, k=3. We need to calculate the number of chords, so the orderings of the

notes should be equivalent in the sense that choosing C2-C3-C4 is the same as choosing

C3-C2-C4 because they are played simultaneously. Therefore, we need to compute the

number of linear combinations, which is C(88, 3)=88!/(3!(88-3)!)=109736 chords with three

notes.

1.2 Transpositional equivalence — chord type permutations

But we, as musicians, can recognize the octave fairly easily, so we would like to eliminate

octave intervals within chords, as well as transpositions of chords (C maj is equivalent to C#

maj). We thus arrive at the concept of pitch-class, which takes the whole sets of notes, such as

{C0, C1, C2,…}, and treats them as one object, in our example the class of all C notes. With

these pitch-classes we can form sets that are equivalent by transposition, as described earlier.

We can now calculate the number of chord types (major, minor, diminished etc.) irrespective

of instruments and we could call them chord type permutations. The mathematical term that

describes this musical object is called circular permutation.



Definition 1.3 A circular permutation is an ordered arrangement of objects in a

circular manner, as opposed to linear permutation. As a consequence of the circular

arrangement, there is only one way of putting the first object, making it fixed. The ordering

thus applies to the n-1 objects.

Corollary 1.2 To arrange n objects in a circle, there are (n-1)! permutations.

Proof. Following Definition 1.3 there is only one way of arranging the first object.

This leaves n-1 ways of ordering the second object. By induction, there are n-n+1 ways of

ordering the nth object. In total, there are 1(n-1)(n-2)…(n-n+1)=(n-1)! circular permutations

for n objects.

Q.E.D.

Lemma 1.4 To arrange k out of n objects in a circle, there are (n-1)!/(n-k)!.

Proof The total number of ways we can arrange n objects in a circle is (n-1)!. From this we

need to eliminate all the ways we can arrange the n-k objects, which is (n-k)!. By dividing

(n-1)! with (n-k)!, we are left with the circular permutations of k.

Q.E.D.

Coming back to our musical context, the total number of notes that are available to us now is

12, since we established equivalence by octave transposition, so we only have the pitches C,

C#/Db, D etc. Arranging the first object is equivalent to picking any of these 12 pitches to be

the fundamental of the chord, resulting in equivalent transpositions of the chords. To

calculate the number of 3 note chord permutations, we compute



P(12, 3)=11!/9!=110 chord type permutations with 3 notes. By doing this for all numbers of

notes, we obtain the following values:

Table 1. Results for calculating the number of chords

Number of notes in a chord (k) Number of chords

2 notes 11

3 notes 110

4 notes 990

5 notes 7920

6 notes 55440

7 notes 332640

8 notes 1663200

9 notes 6652800

10 notes 19958400

11 notes 39916800

12 notes 39916800

In the case of the 3 notes chord type permutations, we have the following 6 permutations of

the major triad: {tonic—third—fifth, third—fifth—tonic, fifth—tonic—third,

tonic—fifth—third, fifth—third—tonic, third—tonic—fifth}. We recognize the first three

permutations to be the root position, first inversion and second inversion respectively. The



other three permutations have larger consecutive intervals and no conventional names. If we

only want to select the compact forms of these permutations, we obtain the chord type

inversions, which have the mathematical equivalent of circular combinations.

1.3 Compact form — chord type inversions

Definition 1.4 A circular combination of n objects is an unordered arrangement of

objects in a circular manner. It is a partition of the circular permutation set.

Lemma 1.5 The number of circular combinations for k is (n-1)!/((n-k)!(k-1)!).

Proof. Similar to the proof in Lemma 1.3, we need to consider the number of

equivalent permutations in a given equivalence class, except the first object of the k objects is

now fixed, as established in Definition 1.3. This leaves (n-1)! permutations in total and (k-1)!

permutations for k, as the first object is fixed. For each k-1 permutation there are (n-k)!

permutations in an equivalence class. Therefore, there are (k-1)!(n-k)! permutations per

equivalence class in a circular arrangement. We now divide (n-1)! total permutations by

(k-1)!(n-k)! to obtain the number of equivalence classes in the circular permutations set.

Q.E.D.

From now on, we will adopt the C(n, k) notation to refer to the number of circular

combinations, where an element of k is fixed. We will denote the set of circular combinations

with C(n, k). An example of a set of circular combinations for k=3 and n=5 is

C(5, 3)={111aa, 11a1a, 11aa1, 1a11a, 1a1a1, 1aa11}.

Bringing the three note chords example back, we can calculate the number of chord

type inversions as follows: n=12, k=3, C(12, 3)=11!/(9!2!)=55. We now compute for the rest



of k values and obtain the following results:

Table 2. Results for calculating the number of chord type inversions

Number of notes in a chord (k) Number of chord type inversions

2 notes 11

3 notes 55

4 notes 165

5 notes 330

6 notes 462

7 notes 462

8 notes 330

9 notes 165

10 notes 55

11 notes 11

12 notes 1

This is already a big change from the previous results. The numbers are much smaller and

there is some form of symmetry in the sense that C(n, k)=C(n, n-k+1).



1.4 Inversional equivalence — chord types

As musicians, there is one more equivalence we would like to make, which is the equivalence

of inversion (or rotation as it is called in maths). We would like to obtain the number of chord

types without inversions or transpositions (ex. major, minor, diminished, augmented etc.).

This leads us to the mathematical concept of necklaces, more specifically binary necklaces.

Definition 2.1 A binary necklace of length n is a string of n characters, each of 2

possible types. Rotation is ignored, in the sense that b1b2...bn is equivalent to

bibi+1...bnb1b2...bi-1 for any i.

Definition 2.2 A necklace with fixed content has the number of each type of character

k, n-k predetermined or fixed.

Definition 2.3 A periodic or rotationally symmetric necklace of length n is a string

that can be divided into repeating subsequences, thus having less than n distinct rotations.

Definition 2.4 An aperiodic necklace of length n has n distinct rotations. Each

aperiodic necklace can be represented by a Lyndon word, which is the lexicographically

smallest string of those that are equivalent by rotation.

Let us now examine the connection between circular combinations and necklaces.

According to Definition 2.1 and 2.4, fixed density binary necklaces are strings of n characters

of 2 alphabets, such that rotation is ignored and k is known. But circular combinations, after

replacing the equivalence classes with representatives, also become strings of length n with 2

alphabets, where k is known. This makes the set of fixed content necklaces a partition of the



circular combinations set, such that elements in the set are equivalent by rotation. An

example of an equivalence class is {1100∼1001}. But in the set of circular combinations, the

first character in the string always belongs to k , as we have established in Lemma 1.5. This

means that the maximum amount of elements in an equivalence class by rotation is k. By

Definition 2.4, an aperiodic necklace has n distinct rotations. But we have already established

that in an equivalence class there can be a maximum of k elements. Therefore, the necklace

set is a partition of the circular combination set. An aperiodic necklace has precisely k

elements in an equivalence class and, consequently, a rotationally symmetric or periodic

necklace has less than k elements. According to Definition 2.4, it has been established that the

lexicographically smallest element will be chosen as a representative for a given equivalence

class. For example, {1100∼1001}≡{1100}.

We will adopt the conventional N(n, k) notation to refer to the set of necklaces. The

notation L(n, k) is referring to aperiodic necklaces (“L” stands for Lyndon word) and we will

write R(n, k) to denote the set of rotationally symmetric necklaces. Their notation with italic

letters will denote their cardinality. To distinguish between equivalence classes with k and

less than k elements, we will denote the set of circular combinations that belong to aperiodic

necklaces with CL(n, k), and the circular combinations that belong to rotationally symmetric

necklaces with CR(n, k).

Corollary 2.1 Given the definitions and relations discussed so far, the following

statements can be made as a consequence:

L(n, k)=CL(n, k)/∼

R(n, k)=CR(n, k)/∼

N(n, k)=C(n, k)/∼

L(n, k)+R(n, k)=N(n, k)



CL(n, k)+CR(n, k)=C(n, k)

L(n, k)=CL(n, k)/k

Lemma 2.1 N(n, k)=L(n, k)=C(n, k)/k⇔ gcd(n, k)=1.

Proof. According to Definition 2.3, periodic necklaces can be divided into repeating

subsequences. A necklace can be divided into repeating subsequences if, and only if, it can be

divided into equal parts. A string of characters can be divided into equal parts if, and only if,

the number of each type of character can be equally divided by some number larger than 1.

Suppose you divide k by 2 and n-k by 3 to form equal subsequences. Then there will be 3

strings, where at least one contains no k objects, which is a contradiction with the initial

statement. By induction, you cannot divide each k, n-k by unequal amounts to form identical

subsequences, therefore N(n, k)=L(n, k) and N(n, k)=L(n, k). But in Corollary 2.1 we have

obtained N(n, k)=C(n, k)/∼ , and if the representatives of the equivalence classes cannot be

divided into repeating subsequences, then all elements of C(n, k) cannot be divided into

repeating subsequences. Therefore, C(n, k)=CL(n, k) and C(n, k)=CL(n, k)⇔ gcd(n, k)=1. But

also in Corollary 2.1, we have obtained that L(n, k)= CL(n, k)/k , therefore,

N(n, k)=C(n, k)/k⇔ gcd(n, k)=1.

Q.E.D.

Lemma 2.2 For k or n-k is a prime number and gcd(n, k)≠1, CR(n, k)=R(n, k)=1.

Proof. Suppose k is a prime number. Then, following the proof provided by Euclid in

Book VII, Proposition 29, gcd(n, k)≠1⇔ gcd(n, k)=k. But a prime number can only be

divided by 1 and itself and, following Lemma 2.1, a necklace is rotationally symmetric if, and



only if, n, k can be divided by a number larger than 1. Therefore, in our case, n, k can only

be divided once by k. But each of those subsequences will contain exactly 1 of k objects, since

k/k=1 and the object is fixed, by Lemma 1.5.

Q.E.D.

An example for a rotationally symmetric necklace, where k is prime, is

R(9, 3)=CR(9, 3)={1aa1aa1aa}. Any rotation of this string, such that there is a “1” at the

beginning of the string, produces its identity. The repeating substring is {1aa}.

Corollary 2.2 As a direct result of Lemma 2.2, the following statement can be made:

L(n, k)=(C(n, k)-1)/k⇔ gcd(n, k)≠1 and k is prime.

An example for a set where all necklaces are aperiodic is N(5, 2)={11aaa, 1a1aa}.

Lemma 2.3 Let SR(n, k) be the set of repeating substrings into which periodic

necklaces can be divided. Then SR(n, k)=⋃d|gcd(n, k), d>1 L(n/d, k/d).

Proof. Let there be a periodic necklace R(6,4)={aabaab}. This particular example

can be divided into two identical subsequences, namely {aab}. Suppose you can divide the

same periodic necklace into the following repeating subsequence {aba}. Both {aab} and

{aba} are equivalent by rotation and any periodic necklaces of the same length that they can

produce will also be equivalent by rotation, and will belong, as a consequence, to the same

equivalence class of the circular combination set. For any periodic necklace of length n, a

division of it by some number x will produce identical strings of length n/x. Any rotation of

that string, when extended x times to produce the periodic necklace of length n, will produce



a rotation of the original necklace. Therefore, the subsequences need to be necklaces and not

circular combinations. We have established that, in order for a necklace to be periodic,

n, k have to be divisible by some common factor d>1. Let y(d) be the number of common

factors of n, k . If y(d)=1, the periodic necklace can be divided one time into d=gcd(n, k)

subsequences. If y(d)=2, the periodic necklaces can be divided two times — once into

d1=gcd(n, k) subsequences and once into d2 subsequences, where d2|gcd(n, k). And so for any

y(d), the periodic necklace can be divided y times. If the subsequence is a periodic necklace

itself, then the subsequence can be further divided by some number x. For example, the

subsequence {1a1a} can be further divided into x=2 repeating subsequences {1a}. But if x|d

and d|gcd(n, k), then x|gcd(n, k), which is already taken into account by d|gcd(n, k).

Therefore, the repeating subsequences need to be aperiodic necklaces. In order to prove

uniqueness, we proceed by solving the following two cases:

Case 1 — two different subsequences of the same length cannot produce the same

periodic necklace. We have already proved that the two subsequences cannot be rotations of

each other. If the number of characters of each alphabet is different for the two subsequences,

multiplying them by the same number would produce different numbers of characters of each

alphabet and, consequently, different periodic necklaces. For example, extending the two

subsequences {1a1aa} and {1a11a} by the same amount d=2 would produce the two different

periodic necklaces {1a1aa1a1aa} and {1a11a1a11a}. Suppose that two different

subsequences have the same number of each character type and they are not rotations of

each other. Then the periodic necklaces that they produce are not rotations of each other and,

consequently, different.

Case 2 — two aperiodic necklaces of different lengths cannot produce the same

necklace. In order for the two subsequences to produce the same periodic necklace, one of

them needs to be extended x amount of times and the other needs to be extended y amount of



times. So, gcd(xn, xk) of the first necklace is equal to xgcd(n, k) and gcd(yn, yk) of the second

must equal ygcd(n, k). But gcd(n, k)=1 for both subsequences, since they are aperiodic, so in

order to produce the same periodic necklace, gcd(xn, xk)=gcd(yn, yk), and therefore x=y,

which is absurd.

Q.E.D.

Corollary 2.3 As a direct consequence of Lemma 2.3 and of the previous proofs, the

following formulas can be made:

R(n, k)=∑ d|gcd(n, k), d>1 L(n/d, k/d)

CR(n, k)=∑ d|gcd(n, k), d>1 CL(n/d, k/d)

At this point we have a complete set of formulas for counting necklaces with fixed

content:

C(n, k)=(n-1)!/((k-1)!(n-k)!)

CL(n, k)=C(n, k)-CR(n, k)

CR(n, k)=∑ d|gcd(n, k), d>1 CL(n/d, k/d)

L(n, k)=(C(n, k)-CR(n, k))/k

R(n, k)=∑ d|gcd(n, k), d>1 L(n/d, k/d)

N(n, k)=L(n, k)+R(n, k)

This method, although complete, is recursive. We will now proceed with proving the

simplification of these formulas.

Proposition 1.1 For gcd(n, k)=pa, where p is a prime number and a is any positive

integer, CR(n, k)=C(n/p, k/p).



Proof. According to the fundamental theorem of arithmetic, any number that is not

prime is a unique product of prime numbers. This also applies to the gcd(n, k) and this

recurring division will carry out until n and k are coprime. Using the recursive formulas

obtained in Corollary 2.3, CR(n, k)=C(n/p, k/p)-C(n/p2, k/p2)+C(n/p2, k/p2)-…-

C(n/pa-1, k/pa-1)+C(n/pa-1, k/pa-1)-C(n/pa, k/pa)+C(n/pa, k/pa). This summation stops with

C(n/pa, k/pa) because n/pa, k/pa are guaranteed to be coprime by the fact that gcd(n, k)=pa.

But -C(n/p2, k/p2)+C(n/p2, k/p2)=0, -C(n/p3, k/p3)+C(n/p3, k/p3)=0, all the way to

-C(n/pa-1, k/pa-1)+C(n/pa-1, k/pa-1)=0 and -C(n/pa, k/pa)+C(n/pa, k/pa)=0. Therefore, the only

term that remains from this expression is C(n/p, k/p).

Q.E.D.

Proposition 1.2 For gcd(n, k)=p1ap2b, where p1 and p2 are the unique prime factors

raised to the power of a and b respectively,

CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2)).

Proof. Let d(n, k) be the set of d|gcd(n, k), such that d>1. For the case where

gcd(n, k)=p1ap2b , d(n, k)={p11, p12,…,p1a, p21, p22,…,p2b, p11p21, p12p22,…,p1ap2b, p11p22,…,p11p2b,

p12p23,…,p12p2b,…, p1a-1p2b, p12p21,…,p1ap21, p13p22,…, p1ap22,…,p1ap2b-1}. We can construct a

matrix with all elements of d(n, k).

p1 p12 ⋯ p1a-2 p1a-1 p1a

p2 p1p2 p12p2 ⋯ p1a-2p2 p1a-1p2 p1ap2

p22 p1p22 p12p22 ⋯ p1a-2p22 p1a-1p22 p1ap22



⁝ ⁝ ⁝ ⋯ ⁝ ⁝ ⁝

p2b-2 p1p2b-2 p12p2b-2 ⋯ p1a-2p2b-2 p1a-1p2b-2 p1ap2b-2

p2b-1 p1p2b-1 p12p2b-1 ⋯ p1a-2p2b-1 p1a-1p2b-1 p1ap2b-1

p2b p1p2b p12p2b ⋯ p1a-2p2b p1a-1p2b p1ap2b

This recurrence relation can continue until gcd(n, k)/d=1 and no further division can occur,

because gcd(n/d, k/d)=1. But {x : x=gcd(n, k)/d} ≡ {δ : δ|gcd(n, k), δ<gcd(n, k)}, so by

dividing gcd(n, k)/d, we obtain the following equivalent matrix, which should make

visualisation of the proof easier:

p1a-1p2b p1a-2p2b ⋯ p12p2b p1p2b p2b

p1ap2b-1 p1a-1p2b-1 p1a-2p2b-1 ⋯ p12p2b-1 p1p2b-1 p2b-1

p1ap2b-2 p1a-1p2b-2 p1a-2p2b-2 ⋯ p12p2b-2 p1p2b-2 p2b-2

⁝ ⁝ ⁝ ⋯ ⁝ ⁝ ⁝

p1ap22 p1a-1p22 p1a-2p22 ⋯ p12p22 p1p22 p22

p1ap2 p1a-1p2 p1a-2p2 ⋯ p12p2 p1p2 p2

p1a p1a-1 p1a-2 ⋯ p12 p1 1

Then using the same recursive formula from Corollary 2.3,

CR(n, k)=∑ d∈ d(n, k) C(n/d, k/d)-CR(n/d, k/d). We now want to find how many C(n/d, k/d) terms

there are in this recurrence relation without computing the circular combination function.

This recurrence relation begins by summing all the gcd(n, k)/d terms, which are equivalent to



the δ elements that can be seen in the second matrix. Each of those elements, except for 1, are

further divisible by some factor d>1. So from each of those elements we need to subtract

CR(gcd(n, k)/d). But CR(gcd(n, k)/d)=C(gcd(n, k)/(dg)), where g∈ d(n, k). In the second

matrix this can be visualised such that each term is divisible by the terms right and below it

and from each term, all the terms right and below it need to be subtracted, and from those

again the same, until reaching 1 and the recurrence relation ends.

For gcd(n, k)=p11p21, CR(n, k)=C(n/p1, k/p1)-C(n/(p1p2), k/(p1p2))+C(n/p2, k/p2)-

C(n/(p1p2), k/(p1p2))+C(n/(p1p2), k/(p1p2))=C(n/p1, k/p1)+C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2)).

For gcd(n, k)=p1p22, CR(n, k)=C(n/p1, k/p1)-CR(n/p1, k/p1)+C(n/p2, k/p2)-

CR(n/p2, k/p2)+C(n/p22, k/p22)-CR(n/p22, k/p22)+C(n/(p1p2), k/(p1p2))-CR(n/(p1p2), k/(p1p2))+

C(n/(p1p22), k/(p1p22)).

But in Proposition 1.1 we have demonstrated that CR(n, k)=C(n/p, k/p)⇔

gcd(n, k)=pa. So, CR(n/p22, k/p22)=CR(n/(p1p2), k/(p1p2))=C(n/(p1p22), k/(p1p22)) and

CR(n/p1, k/p1)=C(n/(p1p2), k/(p1p2)). Also, CR(n/(p1p22), k/(p1p22))=0. We have also previously

demonstrated that CR(n/p2, k/p2)=C(n/p22, k/p22)+C(n/(p1p2), k/(p1p2))-C(n/(p1p22), k/(p1p22)).

So, CR(n, k)=C(n/p1, k/p1)-C(n/(p1p2), k/(p1p2))+C(n/p2, k/p2)-C(n/p22, k/p22)-

C(n/(p1p2), k/(p1p2))+C(n/(p1p22), k/(p1p22))+C(n/p22, k/p22)-C(n/(p1p22), k/(p1p22))+

C(n/(p1p2), k/(p1p2))-C(n/(p1p22), k/(p1p22))+C(n/(p1p22), k/(p1p22))=C(n/p1, k/p1)+

C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2)). The same method applies to gcd(n, k)=p12p2.

For gcd(n, k)=p12p22, CR(n, k)=C(n/p1, k/p1)-CR(n/p1, k/p1)+C(n/p2, k/p2)-

CR(n/p2, k/p2)+C(n/p12, k/p12)-CR(n/p12, k/p12)+C(n/p22, k/p22)-CR(n/p22, k/p22)+

C(n/(p12p2), k/(p12p2))-CR(n/(p12p2), k/(p12p2))+C(n/(p1p22), k/(p1p22))-CR(n/(p1p22), k/(p1p22))+

C(n/(p1p2), k/(p1p2))-CR(n/(p1p2), k/(p1p2))+C(n/(p12p22), k/(p12p22)).

We have already proved the formula for each CR term, therefore

CR(n, k)=C(n/p1, k/p1)-C(n/p12, k/p12)+C(n/(p12p2), k/(p12p2))-C(n/(p1p2), k/(p1p2))+



C(n/(p12p2), k/(p12p2))+C(n/(p1p22), k/(p1p22))-C(n/(p12p22), k/(p12p22))-C(n/(p1p22), k/(p1p22))+

C(n/(p12p22), k/(p12p22))-C(n/(p12p2), k/(p12p2))+C(n/(p12p22), k/(p12p22))-

C(n/(p12p22), k/(p12p22))+C(n/p2, k/p2)-C(n/p22, k/p22)+C(n/(p1p22), k/(p1p22))-

C(n/(p1p2), k/(p1p2))+C(n/(p12p2), k/(p12p2))+C(n/(p1p22), k/(p1p22))-C(n/(p12p22), k/(p12p22))-

C(n/(p1p22), k/(p1p22))+C(n/(p12p22), k/(p12p22))-C(n/(p12p2), k/(p12p2))+C(n/(p12p22), k/(p12p22))-

C(n/(p12p22), k/(p12p22))+C(n/p12, k/p12)-C(n/(p12p2), k/(p12p2))+C(n/p22, k/p22)-

C(n/(p1p22), k/(p1p22))+C(n/(p1p22), k/(p1p22))-C(n/(p12p22), k/(p12p22))+C(n/(p12p2), k/(p12p2))-

C(n/(p12p22), k/(p12p22))+C(n/(p1p2), k/(p1p2))-C(n/(p12p2), k/(p12p2))-C(n/(p1p22), k/(p1p22))+

C(n/(p12p22), k/(p12p22))+C(n/(p12p22), k/(p12p22))=C(n/p1, k/p1)+C(n/p2, k/p2)-

C(n/(p1p2), k/(p1p2)).

By induction, for gcd(n, k)=p1ap2b, where a,b>1,

CR(n/(p1ap2b), k/(p1ap2b))=0, CR(n/(p1ap2b-1), k/(p1ap2b-1))=C(n/(p1ap2b), k/(p1ap2b)),

CR(n/(p1a-1p2b), k/(p1a-1p2b))=C(n/(p1ap2b), k/(p1ap2b)), CR(n/(p1a-1p2b-1), k/(p1a-1p2b-1))=

C(n/(p1ap2b-1), k/(p1ap2b-1))+C(n/(p1a-1p2b), k/(p1a-1p2b))-C(n/(p1ap2b), k/(p1ap2b)),

CR(n/p1a, k/p1a)=C(n/(p1ap2), k/(p1ap2)), CR(n/p2b, k/p2b)=C(n/(p1p2b), k/(p1p2b)),

CR(n/p1a-1, k/p1a-1)=C(n/(p1a-1p2), k/(p1a-1p2))+C(n/p1a, k/p1a)-C(n/(p1ap2), k/(p1ap2)),

CR(n/p2b-1, k/p2b-1)=C(n/(p1p2b-1), k/(p1p2b-1))+C(n/p2b, k/p2b)-C(n/(p1p2b), k/(p1p2b)).

CR(n, k)=C(n/(p1ap2b), k/(p1ap2b))+(∑a∑bC(n/(p1a-1p2b-1), k/(p1a-1p2b-1))-

C(n/(p1ap2b-1), k/(p1ap2b-1))-C(n/(p1a-1p2b), k/(p1a-1p2b))+C(n/(p1ap2b), k/(p1ap2b)))+

(∑b C(n/(p1ap2b-1), k/(p1ap2b-1))-C(n/(p1ap2b), k/(p1ap2b)))+(∑a C(n/(p1a-1p2b), k/(p1a-1p2b))-

C(n/(p1ap2b), k/(p1ap2b)))+(∑a C(n/p1a-1, k/p1a-1)-C(n/(p1a-1p2), k/(p1a-1p2))-C(n/p1a, k/p1a)+

C(n/(p1ap2), k/(p1ap2)))+(∑b C(n/p2b-1, k/p2b-1)-C(n/(p1p2b-1), k/(p1p2b-1))-C(n/p2b, k/p2b)+

C(n/(p1p2b), k/(p1p2b)))+C(n/p1a, k/p1a)-C(n/(p1ap2), k/(p1ap2))+C(n/p2b, k/p2b)-

C(n/(p1p2b), k/(p1p2b))=C(n/p1, k/p1)+C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2)).

Q.E.D.



Proposition 1.3 For any gcd(n, k)=p1ap2bp3c, where p1, p2 and p3 are unique prime

factors raised to the power of a, b and c respectively,

CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)+C(n/p3, k/p3)+C(n/(p1p2p3), k/(p1p2p3))-

C(n/(p1p2), k/(p1p2))-C(n/(p1p3), k/(p1p3))-C(n/(p2p3), k/(p2p3)).

Proof. Similar to the proof in Proposition 1.2, we need to construct a matrix with

gcd(n, k)/d, where d>1, with the alternative matrix containing the terms

gcd(n, k)/δ in descending order, where δ|gcd(n, k) and δ<gcd(n, k). This matrix is now

three-dimensional, like a rectangular prism or cube, such that it is extended from the

two-dimensional matrix in Proposition 1.2 with the z-axis containing the p3 terms starting

from the top left corner, pointing towards the viewer. We have so far provided proof for

calculating the terms on the front, right and bottom faces of the three dimensional matrix.

After performing the algebraic expression which has been omitted here to save space (it can

be requested from the author), the following results are obtained:

For gcd(n, k)=p11p21p31, CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)+C(n/p3, k/p3)+

C(n/(p1p2p3), k/(p1p2p3))-C(n/(p1p2), k/(p1p2))-C(n/(p1p3), k/(p1p3))-C(n/(p2p3), k/(p2p3)).

For gcd(n, k)=p12p21p31, So, CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)+C(n/p3, k/p3)+

C(n/(p12p2p3), k/(p12p2p3))-C(n/(p1p2), k/(p1p2))-C(n/(p1p3), k/(p1p3))-C(n/(p2p3), k/(p2p3)). The

same result applies to gcd(n, k)=p11p22p31 and gcd(n, k)=p11p21p32.

For gcd(n, k)=p12p22p31, CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)+C(n/p3, k/p3)+

C(n/(p1p2p3), k/(p1p2p3))-C(n/(p1p2), k/(p1p2))-C(n/(p1p3), k/(p1p3))-C(n/(p2p3), k/(p2p3)). The

same applies to gcd(n, k)=p11p22p32 and gcd(n, k)=p12p21p32.

By induction, for gcd(n, k)=p1ap2bp3c, where a,b,c > 1, CR(n, k)=C(n/p1, k/p1)+



C(n/p2, k/p2)+C(n/p3, k/p3)+C(n/(p1p2p3), k/(p1p2p3))-C(n/(p1p2), k/(p1p2))-

C(n/(p1p3), k/(p1p3))-C(n/(p2p3), k/(p2p3)).

Q.E.D.

Corollary 3.1 We now have a complete simplified formula for calculating aperiodic

necklaces with gcd(n, k) equal up to three prime factors raised to any power:

L(n, k)=(C(n, k)-CR(n, k))/k, where CR(n, k)=C(n/p, k/p)⇔ gcd(n, k)=pa,

CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2))⇔ gcd(n, k)=p1ap2b,

CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)+C(n/p3, k/p3)+C(n/(p1p2p3), k/(p1p2p3))-

C(n/(p1p2), k/(p1p2))-C(n/(p1p3), k/(p1p3))-C(n/(p2p3), k/(p2p3))⇔ gcd(n, k)=p1ap2bp3c.

We are essentially predicting what the Möbius function would produce and using

smaller terms by using circular combinations instead of linear combinations. Let us show the

following example for L(24, 12). Using the old formula, L(24, 12)=(μ(1)C(24, 12)+

μ(2)C(12, 6)+μ(3)C(8, 4)+μ(4)C(6, 3)+μ(6)C(4, 2)+μ(12)C(2, 1))/24, where μ(d) is the

Möbius function applied to d|gcd(24, 12) and C(n, k)=n!/(k!(n-k)!). Computing the Möbius

function, μ(1)=1, μ(2)=-1, μ(3)=-1, μ(4)=0, μ(6)=1 and μ(12)=0. Therefore,

L(24, 12)=(24!/(12!12!)-12!/(6!6!)-8!/(4!4!)+4!/(2!2!))/24=112632.

Let us now use our formula. For gcd(24, 12)=12=223, CR(24, 12)=C(12, 6)+

C(8, 4)-C(4, 2), where C(n, k)=(n-1)!/((k-1)!(n-k)!). Therefore,

L(24, 12)=(23!/(11!12!)-11!/(5!6!)-7!/(3!4!)+3!/(1!2!))/12=112632.

As we can notice, (n!/(k!(n-k)!))/n=((n-1)!/((k-1)!(n-k)!))/k and we are taking the same

divisors into account, therefore we can replace our formula with the Möbius function, which

has already been proven by mathematicians.



Proposition 2.1 After applying the formulas from Proposition 1 to the formula in

Corollary 2.3, we can arrive at the following simplified method for calculating rotationally

symmetric necklaces:

R(n, k)=1/k∑ d|gcd(n, k), d>1 Χ(d)C(n/d, k/d), where

Χ(d)=d⇔ d=p1

Χ(d)=d-pa-1⇔ d=pa and a>1

Χ(d)=d-p1-p2⇔ d=p11p21

Χ(d)=d- p1a-1p2b-1(p1+p2-1)⇔ d=p1ap2b and a or b>1

Χ(d)=d-p1p3-p2p3-p1p2+p1+p2+p3⇔ d=p11p21p31

Χ(d)=d-p1a-1p2b-1p3c-1(1+p1p3+p2p3+p1p2-p1-p2-p3)⇔ d=p1ap2bp3c and either a,b or c>1.

Proof. Applying the formula we know thus far,

R(n, k)=∑ d|gcd(n, k), d>1 (C(n/d, k/d)-CR(n/d, k/d))/(n/d).

If we amplify each of those fractions by d, they will have k as a common denominator. This

leads to R(n, k)=1/k∑ d|gcd(n, k), d>1d(C(n/d, k/d)-CR(n/d, k/d)).

If we go back to the matrices we have built in Proposition 1, we need to consider

which type of terms have less divisors than the preceding terms. These are to be found at the

extremes of the matrix, where there are no more terms right, below or in front of them, by

which they can be divided. When gcd(n, k)=p1a, the only special term in the line is

CR(n/p1a, k/p1a)=0. When gcd(n, k)=p1ap2b, the special terms are CR(n/(p1ap2b), k/(p1ap2b))=0,

CR(n/p1a-1, k/p1a-1)=C(n/p1a-1, k/p1a-1)-C(n/p1a, k/p1a) and CR(n/p1b-1, k/p1b-1)=C(n/p1b-1, k/p1b-1)-

C(n/p1b, k/p1b). We should therefore consider these special terms separately when calculating

R(n, k).

For gcd(n, k)=p1a, R(n, k)=((∑ pa-1(C(n/p1a-1, k/p1a-1)-C(n/p1a, k/p1a)))+

paC(n/p1a, k/p1a))/k. For a=1, R(n, k)=(p11C(n/p11, k/p11))/k.



For a=2, R(n, k)=(p11(C(n/p11, k/p11)-C(n/p12, k/p12))+p12C(n/p12, k/p12))/k=

(p11C(n/p11, k/p11)+(p12-p11)C(n/p12, k/p12))/k.

By induction, X(p1a)=p1a-p1a-1 and the only term that is not being subtracted in this

chain is p1C(n/p1, k/p1). The same reasoning applies also to the bottom row and the vertical

column in the two-dimensional matrix that has no terms underneath and to the right

respectively, and also in the three-dimensional matrix to the bottom front row and right front

column if the z-axis is to be constructed from the two-dimensional matrix towards the viewer.

Let us now resolve for the terms whose CR has terms that lie inside outer planes.

For gcd(n, k)=p1p2, R(n, k)=(p1(C(n/p1, k/p1)-C(n/(p1p2), k/(p1p2)))+p2(C(n/p2, k/p2)-

C(n/(p1p2), k/(p1p2)))+p1p2C(n/(p1p2), k/(p1p2)))/k=(p1C(n/p1, k/p1)+p2C(n/p2, k/p2)+

(p1p2-p1-p2)C(n/(p1p2), k/(p1p2)))/k.

For gcd(n, k)=p12p22, R(n, k)=(p1(C(n/p1, k/p1)-C(n/(p1p2), k/(p1p2))-C(n/p12, k/p12)+

C(n/(p12p2), k/(p12p2)))+p2(C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2))-C(n/p22, k/p22)+

C(n/(p1p22), k/(p1p22)))+p1p2(C(n/(p1p2), k/(p1p2))-C(n/(p12p2), k/(p12p2))-C(n/(p1p22), k/(p1p22))+

C(n/(p12p22), k/(p12p22)))+p12(C(n/p12, k/p12)-C(n/(p12p2), k/(p12p2)))+p22(C(n/p22, k/p22)-

C(n/(p1p22), k/(p1p22)))+p12p2(C(n/(p12p2), k/(p12p2))-C(n/(p12p22), k/(p12p22)))+

p1p22(C(n/(p1p22), k/(p1p22))-C(n/(p12p22), k/(p12p22)))+C(n/(p12p22), k/(p12p22)))/k=

(p1C(n/p1, k/p1)+p2C(n/p2, k/p2)+(p12-p1)C(n/p12, k/p12)+(p22-p2)C(n/p22, k/p22)+

(p1p2-p1-p2)C(n/(p1p2), k/(p1p2))+(p12p2-p12-p1p2+p1)C(n/(p12p2), k/(p12p2))+

(p1p22-p22-p1p2+p2)C(n/(p1p22), k/(p1p22))+(p12p22-p12p2-p1p22+p1p2)C(n/(p12p22), k/(p12p22)))/k.

But p12p2-p12-p1p2+p1=p12p2-p1(p1+p2-1), p1p22-p22-p1p2+p2=p1p22-p2(p2+p1-1) and

p12p22-p12p2-p1p22+p1p2=p12p22-p1p2(p1+p2-1), which is in accordance with our initial

statement.

By induction, for gcd(n, k)=p1ap2b, where a, b>1,

R(n, k)=(p1ap2bC(n/(p1ap2b), k/(p1ap2b))+(∑a∑bp1a-1p2b-1(C(n/(p1a-1p2b-1), k/(p1a-1p2b-1))-



C(n/(p1ap2b-1), k/(p1ap2b-1))-C(n/(p1a-1p2b), k/(p1a-1p2b))+C(n/(p1ap2b), k/(p1ap2b)))+

(∑b p1ap2b-1(C(n/(p1ap2b-1), k/(p1ap2b-1))-C(n/(p1ap2b), k/(p1ap2b)))+

(∑a p1a-1p2b(C(n/(p1a-1p2b), k/(p1a-1p2b))-C(n/(p1ap2b), k/(p1ap2b)))+

(∑a p1a-1(C(n/p1a-1, k/p1a-1)-C(n/(p1a-1p2), k/(p1a-1p2))-C(n/p1a, k/p1a)+

C(n/(p1ap2), k/(p1ap2)))+(∑b p2b-1(C(n/p2b-1, k/p2b-1)-C(n/(p1p2b-1), k/(p1p2b-1))-

C(n/p2b, k/p2b)+C(n/(p1p2b), k/(p1p2b)))+p1a(C(n/p1a, k/p1a)-C(n/(p1ap2), k/(p1ap2)))+

p2b(C(n/p2b, k/p2b)-C(n/(p1p2b), k/(p1p2b))))/k. So,

X(p1ap2b)=p1ap2b+p1a-1p2b-1-p1ap2b-1-p1a-1p2b=p1ap2b-p1a-1p2b-1(p1+p2-1),

X(p1ap2)=p1ap2+p1a-1-p1a-p1a-1p2=p1ap2-p1a-1(p1+p2+1)=p1ap2-p1a-1p20(p1+p2+1),

X(p1p2b)=p1p2b+p2b-1-p2b-p1p2b-1=p1p2b-p2b-1(p1+p2+1)=p1p2b-p10p2b-1(p1+p2+1),

X(p1a)=p1a-p1a-1, X(p2b)=p2b-p2b-1, X(p1)=p1 , X(p2)=p2 , confirming our initial statement and

therefore covering all the terms in the two-dimensional matrix, as well as the terms on the far

bottom, right and front planes of the three-dimensional matrix, if it were to be extended from

the two-dimensional matrix with the z-axis pointing towards the viewer. For the remaining

terms inside the three-dimensional matrix the algebraic expression will not be shown in order

to save space and the following results are obtained:

For gcd(n, k)=p11p21p31, R(n, k)=(p1C(n/p1, k/p1)+p2C(n/p2, k/p2)+p3C(n/p3, k/p3)+

(p1p2-p1-p2)C(n/(p1p2), k/(p1p2))+(p1p3-p1-p3)C(n/(p1p3), k/(p1p3))+

(p2p3-p2-p3)C(n/(p2p3), k/(p2p3))+(p1p2p3-p1p3-p2p3-p1p2+p1+p2+p3)C(n/(p1p2p3), k/(p1p2p3)))/k.

For gcd(n, k)=p12p22p32, X(p1)=p1 , X(p2)=p2 , X(p3)=p3 , X(p1p2)=p1p2-p1-p2 ,

X(p1p3)=p1p3-p1-p3 , X(p2p3)=p2p3-p2-p3 , X(p1p2p3)=p1p2p3+p1+p2+p3-p1p2-p1p3-p2p3 ,

X(p12)=p12-p1 , X(p22)=p22-p2 , X(p32)=p32-p3 , X(p12p2)=p12p2-p1(p1+p2-1),

X(p1p22)=p1p22-p2(p2+p1-1), X(p12p3)=p12p3-p1(p1+p3-1), X(p1p32)=p1p32-p3(p3+p1-1),



X(p22p3)=p22p3-p2(p2+p3-1), X(p2p32)=p2p32-p3(p3+p2-1), X(p12p22)=p12p22-p1p2(p1+p2-1),

X(p12p32)=p12p32-p1p3(p1+p3-1), X(p22p32)=p22p32-p2p3(p2+p3-1),

X(p12p2p3)=p12p2p3-p1(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1p22p3)=p1p22p3-p2(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1p2p32)=p1p2p32-p3(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p12p22p3)=p12p22p3-p1p2(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p12p2p32)=p12p2p32-p1p3(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1p22p32)=p1p22p32-p2p3(p1p2+p1p3+p2p3+1-p1-p2-p3), and

X(p12p22p32)=p12p22p32-p1p2p3(p1p2+p1p3+p2p3+1-p1-p2-p3).

By induction, for gcd(n, k)=p1ap2bp3c, where a,b,c>1, X(p1)=p1, X(p2)=p2, X(p3)=p3,

X(p1a)=p1a-p1a-1, X(p2b)=p2b-p2b-1, X(p3c)=p3c-p3c-1, X(p1ap2b)=p1ap2b-p1a-1p2b-1(p1+p2-1),

X(p1ap2)=p1ap2-p1a-1p20(p1+p2+1), X(p1p2b)=p1p2b-p10p2b-1(p1+p2+1),

X(p1ap3c)=p1ap2c-p1a-1p3c-1(p1+p3-1), X(p1ap3)=p1ap3-p1a-1p30(p1+p3+1),

X(p1p3c)=p1p3c-p10p3c-1(p1+p3+1), X(p2bp3c)=p2bp2c-p2b-1p3c-1(p2+p3-1),

X(p2bp3)=p2bp3-p2b-1p30(p2+p3+1), X(p2p3c)=p2p3c-p20p3c-1(p2+p3+1),

X(p1ap2p3)=p1ap2p3-p1(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1p2bp3)=p1p2bp3-p2(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1p2p3c)=p1p2p3c-p3(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1ap2bp3)=p1ap2bp3-p1p2(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1ap2p3c)=p1ap2p3c-p1p3(p1p2+p1p3+p2p3+1-p1-p2-p3),

X(p1p2bp3c)=p1p2bp3c-p2p3(p1p2+p1p3+p2p3+1-p1-p2-p3), and

X(p1ap2bp3c)=p1ap2bp3c-p1p2p3(p1p2+p1p3+p2p3+1-p1-p2-p3), which is all in accordance with our

initial statement.

Q.E.D.



Corollary 3.2 Following the proof in Proposition 2, it can be postulated that X(d) will

remain unchanged for any ω(gcd(n, k))>3, where ω counts the number of unique prime

factors of a number.

Proposition 2.2 For the necklace formula, where ω(gcd(n, k))<4,

N(n, k)=1/k ∑ d|gcd(n, k) Y(d)C(n/d, k/d), where

Y(d)=1⇔ d=1

Y(d)=Χ(d)-1⇔ d=p1

Y(d)=Χ(d)⇔ d=pa and a>1

Y(d)=Χ(d)+1⇔ d=p11p21

Y(d)=Χ(d)⇔ d=p1ap2b and a or b>1

Y(d)=Χ(d)-1⇔ d=p11p21p31

Y(d)=Χ(d)⇔ d=p1ap2bp3c and either a,b or c>1.

Proof. We established in Corollary 1.2 that N(n, k)=L(n, k)+R(n, k). But we also

know that L(n, k)=(C(n, k)-CR(n, k))/k and from Proposition 2.1 we obtained the formula

R(n, k)=1/k ∑ d|gcd(n, k), d>1 Χ(d)C(n/d, k/d). By combining these formulas, we obtain

N(n, k)=1/k(C(n, k)-CR(n, k)+∑ d|gcd(n, k), d>1 Χ(d)C(n/d, k/d)). We can now proceed with solving

each case.

For gcd(n, k)=p1 , CR(n, k)=C(n/p1, k/p1), so N(n, k)=1/k(C(n, k)-C(n/p1, k/p1)+

X(p1)C(n/p1, k/p1))=1/k(C(n, k)+(X(p1)-1)C(n/p1, k/p1)).

For gcd(n, k)=p1a, CR(n, k)=C(n/p1, k/p1), so N(n, k)=1/k(C(n, k)-C(n/p1, k/p1)+

X(p1)C(n/p1, k/p1)+∑a>1 X(p1a)C(n/p1a, k/p1a))=1/k(C(n, k)+(X(p1)-1)C(n/p1, k/p1)+

∑a>1 X(p1a)C(n/p1a, k/p1a)).



For gcd(n, k)=p1p2 , CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2)),

therefore N(n, k)=1/k(C(n, k)-C(n/p1, k/p1)-C(n/p2, k/p2)+C(n/(p1p2), k/(p1p2))+

X(p1)C(n/p1, k/p1)+X(p2)C(n/p2, k/p2)+X(p1p2)C(n/(p1p2), k/(p1p2)))=1/k(C(n, k)+

(X(p1)-1)C(n/p1, k/p1)+(X(p2)-1)C(n/p2, k/p2)+(X(p1p2)+1)C(n/(p1p2), k/(p1p2))).

For gcd(n, k)=p1ap2b , CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)-C(n/(p1p2), k/(p1p2)),

therefore N(n, k)=1/k(C(n, k)-C(n/p1, k/p1)-C(n/p2, k/p2)+C(n/(p1p2), k/(p1p2))+

X(p1)C(n/p1, k/p1)+X(p2)C(n/p2, k/p2)+(∑a>1 X(p1a)C(n/p1a, k/p1a))+

(∑b>1 X(p2b)C(n/p2b, k/p2b))+X(p1p2)C(n/(p1p2), k/(p1p2))+

(∑a>1∑b>1 X(p1ap2b)C(n/(p1ap2b), k/(p1ap2b)))+(∑a>1 X(p1ap2)C(n/(p1ap2), k/(p1ap2)))+

(∑b>1 X(p1p2b)C(n/(p1p2b), k/(p1p2b))))=1/k(C(n, k)+(X(p1)-1)C(n/p1, k/p1)+

(X(p2)-1)C(n/p2, k/p2)+(X(p1p2)+1)C(n/(p1p2), k/(p1p2))+(∑a>1 X(p1a)C(n/p1a, k/p1a))+

(∑b>1 X(p2b)C(n/p2b, k/p2b))+(∑a>1∑b>1 X(p1ap2b)C(n/(p1ap2b), k/(p1ap2b)))+

(∑a>1 X(p1ap2)C(n/(p1ap2), k/(p1ap2)))+(∑b>1 X(p1p2b)C(n/(p1p2b), k/(p1p2b)))) and

X(p1ap2b)=X(p1ap2)=X(p1p2b).

For gcd(n, k)=p1p2p3 , CR(n, k)=C(n/p1, k/p1)+C(n/p2, k/p2)+C(n/p3, k/p3)+

C(n/(p1p2p3), k/(p1p2p3))-C(n/(p1p2), k/(p1p2))-C(n/(p1p3), k/(p1p3))-C(n/(p2p3), k/(p2p3)),

therefore N(n, k)=1/k(C(n, k)+(X(p1)-1)C(n/p1, k/p1)+(X(p2)-1)C(n/p2, k/p2)+

(X(p3)-1)C(n/p3, k/p3)+(X(p1p2)+1)C(n/(p1p2), k/(p1p2))+(X(p1p3)+1)C(n/(p1p3), k/(p1p3))+

(X(p2p3)+1)C(n/(p2p3), k/(p2p3))+(X(p1p2p3)-1)C(n/(p1p2p3), k/(p1p2p3))).

For gcd(n, k)=p1ap2bp3c , X(p1ap2b)=X(p1ap2)=X(p1p2b), X(p1ap3c)=X(p1ap3)=X(p1p3c),

X(p2bp3c)=X(p2bp3)=X(p2p3c), and X(p1ap2bp3c)=X(p1ap2bp3)=X(p1ap2p3c)=X(p1p2bp3c)=

X(p1p2p3c)=X(p1p2bp3)=X(p1ap2p3), thereby confirming the initial statement.

Q.E.D.

Corollary 3.3 As we have shown in Corollary 3.1, (n!/(k!(n-k)!))/n=



((n-1)!/((k-1)!(n-k)!))/k and we are taking the same divisors into account as the old formula,

therefore, φ(d)≡Y(d) and for ω(gcd(n, k))>3, we can use Euler’s totient function φ(d) instead

of Y(d): N(n, k)=1/k ∑ d|gcd(n, k) φ(d)C(n/d, k/d), which has already been proven by

mathematicians.

Corollary 3.4 Following Corollary 3.2, it can be postulated that Y(d) will remain

unchanged for any gcd(n, k) and X(d)≡φ(d)-μ(d).

We have now finished proving the formulas needed to calculate necklaces. By applying the

formulas for our 12 tone system in music, we obtain the following numbers of chord types:

Table 3. Results for calculating the number of chord types

Number of notes in a chord (k) Number of chord types

2 notes 6

3 notes 19

4 notes 43

5 notes 66

6 notes 80

7 notes 66

8 notes 43

9 notes 19



10 notes 6

11 notes 1

12 notes 1

As opposed to chord type inversions (circular combinations), we notice that

N(n, k)=N(n, n-k). In the following table we recapitulate the musical terms (with the

equivalent mathematical terms in brackets) and their total numbers for 2 ≤ k ≤ 12:

Table 4. Total number of pitch-class sets

Chords (linear combinations) variable

Chord type permutations (circular permutations) 108,505,111

Chord type inversions (circular combinations) 2,047

Chord types (binary necklaces) 350

Let us now use the formula for rotationally symmetric necklaces to calculate the number of

symmetric chord types, also known as modes of limited transposition:

Table 5. Number of rotationally symmetric chord types

Number of Number of Conventional names for the chord types



notes in a chord

(k)

symmetric

chord types

2 notes 1 tritone

3 notes 1 augmented triad

4 notes 3 diminished seventh chord, dom7 b5, maj7 sus4 b5

5 notes 0

6 notes 5 augmented scale, whole-tone scale, fifth mode, dom7 b5

#9 13, tritone scale

7 notes 0

8 notes 3 whole-half scale, fourth mode, sixth mode

9 notes 1 third mode

10 notes 1 seventh mode

11 notes 0

12 notes 1 chromatic scale

2. Chord progressions

We will now bring our attention to the theme of combinations and progressions of chords.

Definition 3.1 A chord progression is the movement of one chord to another.



As musicians we would like to know in how many ways we can combine chords to form

chord progressions without repeating ourselves through transposition. Before that, we need to

consider some further properties of these chords that will prove useful in the following

chapter.

2.1 Degree of rotational symmetry

We have already established the difference between symmetrical and asymmetrical necklaces

denoted with R and L respectively. In the case of asymmetrical chords, we know that there

are 12 different transpositions of a given chord, whereas rotationally symmetric chords have

less than 12, depending on the common divisors of n and k. So the number of times a

necklace can be rotated until it produces its identity determines the degree of symmetry or

how symmetrical a chord can be. For example, the augmented triad can be transposed 4 times

until it produces the same chord given inversional equivalence. The diminished seventh chord

on the other hand can be transposed 3 times until it produces the same chord.

Let R(n, k) be the set of rotationally symmetric necklaces of length n and k objects.

Let Rd be the subset of chords from that given set with a d degree of symmetry, such that any

necklace from that subset can be rotated n/d times before it produces its identity (d

corresponds to the common divisor by which that particular necklace can be divided). For

example, the augmented triad is part of R3 from R(12, 3) because gcd(12, 3)=3 and it can be

rotated 12/3=4 times until it produces the same chord. Let T(Νx
d) be the number of

transpositions for a given chord Νx
d∈N, such that N=L⋃R (the set of all chords). Then

T(Lx)=12 and T(Rx
d)=12/d.

Now we can enumerate the rotationally symmetric chords in terms of their degree of

symmetry:



Table 6. Rotationally symmetric chord types

Degree of

symmetry

Chord types

R2 tritone, dom7 b5, maj7 sus4 b5, fifth mode, dom7 b5 #9 13,

tritone scale, fourth mode, sixth mode, seventh mode

R3 augmented triad, augmented scale, third mode

R4 diminished seventh, whole-half scale

R6 whole-tone scale

R12 chromatic scale

2.2 Number of chord type progressions

Proposition 3.1 Let Ν be the total number of chord types (necklaces) corresponding to

the cardinality of N. Let Pj be the number of chord type progressions of length j (having j

chords). Then Pj=N(∑T(Νx
d))^(j-1).

Proof. We begin a chord progression by choosing any chord from the N set. The

particular transposition of that chord is irrelevant at the beginning since we are interested in

the intervals between chords. By choosing C maj → G maj or D maj → A maj, we end up

with the same type of chord progression, which can be interpreted as a I-V progression in a

given context. Therefore, when selecting the first chord in the chain, it suffices to select the

chord type transposed arbitrarily. Suppose we start the progression with a C maj. For the



second chord, it does make a difference if we choose a D maj or a B maj, given that the maj

chord is asymmetric and each of the 12 transpositions will produce a different combination

with the first chord. However, in the case of rotationally symmetric chords, we have already

established that it takes less than 12 transpositions to produce the same chord. For example,

E aug ≡ G# aug⇒ C maj → E aug ≡ C maj → G# aug. So for each chord type in the

beginning of the progression, there are all the available chord types multiplied with their

transpositions depending on the degree of symmetry. This results in P2=N∑T(Νx
d). For the

third chord, fourth chord etc. in the progression the number of options stays the same, i.e.

∑T(Νx
d), since choosing the same chord again as previously is accepted according to

Definition 3.1. So for a progression with j number of chords,

Pj=N(∑T(Νx
d))(∑T(Νx

d))…(∑T(Νx
d)) j-1 number of times, which results in

Pj=N(∑T(Νx
d))^(j-1).

Q.E.D.

To give an idea about how large Pj is, we can compute the formula for j=4:

P4=350(12*334+6*9+4*3+3*2+2+1)^3=23,823,533,925,450.

A potentially more useful question is how many chord type progressions there are,

such that no two identical chords are played consecutively.

Corollary 3.5 Following the proof in Proposition 3.1, after choosing the first chord in

the progression, there are (∑T(Νx
d))-1 possibilities for the second chord, because you cannot

play the same chord as before. This leads to Pj=N((∑T(Νx
d))-1)^(j-1).

Computing P4 after taking this restriction into account results in:

P4=350(12*334+6*9+4*3+3*2+2)^3=23,806,033,778,800.



It would take roughly 1.3 billion chord type progression every day for 50 years to

search all of them. But suppose that you know which chord type the progression should start

with because listening to all 350 chord types is not very difficult and makes for an easier

pick. Then P4=1(12*334+6*9+4*3+3*2+2)^3=68,017,239,368. This reduces the search to

roughly 3.5 million chord type progressions every day for 50 years, which is still unrealistic.

However, on a practical level, musicians do not need all 350 necklaces for their music. They

might not prefer chromatic clusters or any chord with more than 6 notes and this restriction

reduces the number of possible chord type progressions drastically. For example, suppose we

only choose the following set of triads: N={maj, min, dim, aug, sus}. Then the number of

chord type progressions with 4 chords is computed as follows: P4=5(12*4+4*1)^3=703,040.

However, if you already know which chord the progression should start with, then

P4=1(12*4+4*1)^3=140,608. An even faster way of navigating all of the possibilities is to

just study pairs of chords, remember their characteristic sound and then chain them together.

In our example with N=5, you would just need to study P2=5(12*4+4*1)=260. This is a

realistically small list of pairs that one can remember over the years. Consider the set N

consisting of all 19 triads. Then P2=19(12*18+4*1)=4180. This is a very powerful and

efficient way of navigating through chord progressions, given the huge variation of

combinations. To make this navigation easier, I made a website that allows you to select and

combine chord types to form progressions and export them as MIDI or audio files:

chordprogressions.org
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